Microfluidic System for Solution Array Based Bioassays

نویسندگان

  • G. M. Dougherty
  • J. B.-H. Tok
  • S. S. Pannu
  • Klint A. Rose
چکیده

The objective of this project is to demonstrate new enabling technology for multiplex biodetection systems that are flexible, miniaturizable, highly automated, low cost, and high performance. It builds on prior successes at LLNL with particle-based solution arrays, such as those used in the Autonomous Pathogen Detection System (APDS) successfully field deployed to multiple locations nationwide. We report the development of a multiplex solution array immunoassay based upon engineered metallic nanorod particles. Nanobarcodes® particles are fabricated by sequential electrodeposition of dissimilar metals within porous alumina templates, yielding optically encoded striping patterns that can be read using standard laboratory microscope optics and PC-based image processing software. The addition of self-assembled monolayer (SAM) coatings and target-specific antibodies allows each encoded class of nanorod particles to be directed against a different antigen target. A prototype assay panel directed against bacterial, viral, and soluble protein targets demonstrates simultaneous detection at sensitivities comparable to state of the art immunoassays, with minimal cross-reactivity. Studies have been performed to characterize the colloidal properties (zeta potential) of the suspended nanorod particles as a function of pH, the ionic strength of the suspending solution, and surface functionalization state. Additional studies have produced means for the non-contact manipulation of the particles, including the insertion of magnetic nickel stripes within the encoding pattern, and control via externally applied electromagnetic fields. Using the results of these studies, the novel Nanobarcodes® based assay was implemented in a prototype automated system with the sample processing functions and optical readout performed on a microfluidic card. The unique physical properties of the nanorod particles enable the development of integrated microfluidic systems for biodefense, protein expression studies, and other applications. Introduction/Background Multiplex bioassays are critical for biodefense and medical diagnostic applications. In many cases, multiple threat agents must be screened simultaneously, or multiple samples must be rapidly tested [1]. Host-response assays require detection and monitoring of combinations of biomarkers, including DNA, RNA, proteins, and small molecules. While tremendous advances in multiplexed biomarker analysis have come about with the advent of DNA and protein chips, this technology is limited in several important ways (see Table I for a comparison between solution arrays and chip technology): (1) microarrays are 2-dimensional, limiting interaction with target molecules; (2) gene and protein chips are aimed at only one type of marker (DNA, RNA, or protein); (3) DNA and protein chips are not reconfigurable; and (4) microarray technologies require the manufacture of specific chips, an approach that is expensive and time consuming. Solution arrays address all of these shortcomings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperspectral imaging analysis of a photonic crystal bead array for multiplex bioassays.

For multiplex bioassays, one effective strategy is to employ microfluidic chips based on an array of photonic crystal beads (PCBs) that are encoded by their characteristic reflection spectrum (CRS). In this paper, we report a hyperspectral imaging system and algorithms for the high throughput decoding of a PCB array and subsequent detection. The results showed that the decoding accuracy of up t...

متن کامل

Reconfiguration Techniques for Digital Microfluidic Biochips

As digital microfluidic biochips become widespread in safety-critical biochemical applications, system dependability emerges as a critical performance parameter. The dynamic reconfigurability inherent in digital microfluidic biochips can be utilized to bypass faulty cells, thereby supporting defect/fault tolerance. In this paper, we propose three different reconfiguration techniques and the cor...

متن کامل

Drug Discovery Acceleration Using Digital Microfluidic Biochip Architecture and Computer-aided-design Flow

A Digital Microfluidic Biochip (DMFB) offers a promising platform for medical diagnostics, DNA sequencing, Polymerase Chain Reaction (PCR), and drug discovery and development. Conventional Drug discovery procedures require timely and costly manned experiments with a high degree of human errors with no guarantee of success. On the other hand, DMFB can be a great solution for miniaturization, int...

متن کامل

Image Decoding of Photonic Crystal Beads Array in the Microfluidic Chip for Multiplex Assays

Along with the miniaturization and intellectualization of biomedical instruments, the increasing demand of health monitoring at anywhere and anytime elevates the need for the development of point of care testing (POCT). Photonic crystal beads (PCBs) as one kind of good encoded microcarriers can be integrated with microfluidic chips in order to realize cost-effective and high sensitive multiplex...

متن کامل

Fault Tolerant DNA Computing Based on ‎Digital Microfluidic Biochips

   Historically, DNA molecules have been known as the building blocks of life, later on in 1994, Leonard Adelman introduced a technique to utilize DNA molecules for a new kind of computation. According to the massive parallelism, huge storage capacity and the ability of using the DNA molecules inside the living tissue, this type of computation is applied in many application areas such as me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006